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Dynamic Force Spectroscopy of Molecular Adhesion Bonds
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Recent advances in atomic force microscopy, biomembrane force probe experiments, and optical tweez-
ers allow one to measure the response of single molecules to mechanical stress with high precision. Such
experiments, due to limited spatial resolution, typically access only one single force value in a continuous
force profile that characterizes the molecular response along a reaction coordinate. We develop a theory
that allows one to reconstruct force profiles from force spectra obtained from measurements at varying
loading rates, without requiring increased resolution. We show that spectra obtained from measurements
with different spring constants contain complementary information.

PACS numbers: 87.15.La, 82.20.Db, 87.15.By, 87.64.Dz
Single molecule mechanical force probe experiments
are a powerful and versatile tool for studying molecu-
lar adhesion through the response of single molecules to
mechanical stress. Investigated processes include specific
binding of ligand-receptor [1,2] and antigen-antibody com-
plexes [3], protein unfolding [4,5], and mechanical prop-
erties of single polymer molecules such as DNA [6] or
polysaccharides [7,8]. These experiments probe a molecu-
lar force along a reaction coordinate (“force profile”). Be-
cause of limited spatial and temporal resolution, however,
typically only the maximum of the force profile can be
accessed, e.g., by measuring a rupture or unfolding force
[1,4]. Thus most details of reaction pathways currently
remain unresolved.

Molecular dynamics simulations of these experiments
[9–11] provided computed force profiles and atomic
models of the particular stress response, from which
experimental force values could be predicted [7,12].
Biological macromolecules are of particular interest, as
the respective force profiles exhibit a complex pattern of
barriers that can be related to interatomic interactions, e.g.,
the rupture of hydrogen bonds, van der Waals contacts, or
water bridges.

Theoretical studies considering simple models of the
underlying energy landscape [10,12–14] have suggested
that direct experimental access to force profiles should
be possible through loading rate-dependent force probe
experiments (“dynamic force spectroscopy”). Indeed,
recent biomembrane force probe (BFP) experiments [2]
resolved three distinct regimes for avidin-biotin unbind-
ing; this analysis was based on the two-level-system
(TLS) formalism [14,15], which requires one to assume
well-separated regimes and is limited to very soft springs.

In this Letter we present a general theory to reconstruct
force profiles from dynamic force spectra. A model-free
approach is used, i.e., no specific shape of the energy
landscape is assumed. Furthermore, we consider the whole
range between experiments which use soft springs, e.g.,
BFP or optical tweezer experiments, and those employing
stiff springs, such as atomic force microscopy (AFM), for
which the TLS approach is not applicable.
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In typical force probe experiments the molecule under
study is connected to a “spring,” e.g., a laser trap or an
AFM cantilever, often via a flexible polymer linker. Sub-
sequently, that spring is moved away from the molecule
with velocity y, which determines the loading rate ≠tF.
During that process the maximum force the molecule can
withstand—the yielding force—is recorded through the
deformation of the spring.

We first aim at a relation between y and Fyield, the
yielding force averaged over a series of single molecule
experiments. We assume a given suitable reaction co-
ordinate x that describes the process (e.g., the distance
between a ligand and its receptor), and a free energy land-
scape U0�x� governing the unbinding process [bold line in
Fig. 1(a)]. We describe the external force 2≠xVpull�x, t�,
which usually acts onto the molecule solely in a posi-
tive pulling direction, by a semiharmonic potential
(dashed line),

(a)

(b)

FIG. 1. (a) Single molecule force probe experiments are de-
scribed by a time-dependent free energy landscape U�x, t� (thin
solid lines) along a reaction coordinate x, which is shown for
two instances, before and at yielding �t�. U�x, t� involves the
free energy landscape U0�x� (bold line) of the unperturbed sys-
tem, and a semiharmonic potential Vpull�x, t� (dashed line) that
describes the external force exerted onto the studied molecule.
(b) The fraction Py�t� of bound states (dotted line) and the un-
binding flux 2≠tPy�t� (dashed line) define the yielding position
j and determine which part of the force profile F�x� � ≠xU0�x�
(solid line) is probed via Fyield (hatched area).
© 2000 The American Physical Society



VOLUME 84, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 26 JUNE 2000
Vpull�x, t� �

Ω
1
2 k�x 2 yt�2 for x , yt ,

0 otherwise .
(1)

Here, k is the effective force constant of the spring/linker
system. Note that a harmonic potential would suppress
activated barrier crossings which, however, are essential
for the experiments considered here. As indicated by the
gray arrow, the moving spring potential Vpull�x, t� forces
the ligand across the barrier. Let x � 0 be the average
reaction coordinate of the unperturbed system, and Vpull
is switched on at t � 0.

For an ensemble of single molecule force probe ex-
periments we assume that the probability distribution
ry�x, t� of the reaction coordinate, which is governed
by picosecond molecular motions, equilibrates rapidly
with respect to the experimental milliseconds time scale.
In this quasistatic treatment [10,14,16], ry�x, t� is given
by the Boltzmann factor, ry�x, t� � exp�2b�U0�x� 1

Vpull�x, t����Z, with configurational partition function Z
and reciprocal thermal energy b � 1�kBT . By introduc-
ing a partition function Zb of bound states x , x�, where
x� is the position of the transition state,

Zb �
1
h

s
2pm

b

Z
x,x�

dx e2b�U0�x�1Vpull�x,t��, (2)

ry�x, t� � Py�t�py�x, t� can be split into the fraction
Py�t� � Zb�Z of bound states and the bound state reac-
tion coordinate distribution py�x, t� � exp�2b�U0�x� 1

Vpull�x����Zb , drawn in Fig. 1(a).
For pulling velocities y . 0 the minimum of U :�

U0 1 Vpull is raised with time as sketched in Fig. 1(a),
and the barrier impeding transition is reduced accordingly.
Thus, the flux 2≠tPy�t� across the barrier is increased,
such that Py�t� drops faster than for y � 0, and transi-
tions are accelerated according to the Kramers forward
rate k1

TST ,

≠tPy�t� � 2kk1
TSTPy�t� � 2v0Py�t�e2bDA�y,t�, (3)

where the transmission coefficient k is assumed to be inde-
pendent of y; v0 :� k��hb�. The activation free energy is
DA�y, t� � U�x�, t� 2 A�y, t� with A�y, t� � 2

1
b lnZb .

If Py�t� were known, and assuming quasistatic condi-
tions, the averaged yielding force could be identified as

Fyield�y� � 2
Z `

0
dt ≠tPy�t� max

t0,t
F�y, t0� (4)

with

F�y, t� � ≠tA�y, t��y . (5)

Since Py�t� is generally sigmoidal [cf. Fig. 1(b)], the
mean yielding force can be approximated to sufficient ac-
curacy by Fyield�y� � maxt,tF�y, t�, where the instance
of yielding, t, is defined via Py�t� �

1
2 . [Corrections can

be derived by expanding Py�t� in t at t.] The cantilever
position at the instance of yielding is j � yt. By using
(5) and the time derivative of Zb from (2), a generalized
Hooke’s law is obtained for harmonic pulling potential,
F�y, t� � k�yt 2 	x
 �y, t�� , (6)

with average ligand position 	x
 :�
R

xpy�x, t� dx [17].
The crucial step is to switch now from y to t as the

independent parameter, and to approximate DA�y, t� by
DA�y, t� :� DA�y, t� 1 �t 2 t�≠tDA�y, t�. This linear
expansion in t holds within a yielding period t 6 Dt,
for which jDA�y, t� 2 DA�y, t�j , 1�b. For a compact
notation, subsequently the t dependency will be omitted,
e.g., A�y, t� � A�y�.

Using DA for DA in (3) allows one to solve for Py�t�,

Py�t� � �1 2 e� exp

∑
v0

b≠tDA�y�
e2b�DA�y�1�t2t�≠tDA�y��

∏
(7)

with e ø 1 chosen such that Py�0� � 1 [18].
Recalling the definition of t, Py�t� �

1
2 , Eq. (7) speci-

fies the activation free energy at the instance t of yielding,

bDA�y� � 2 ln
2b≠tDA�y� ln2

v0
. (8)

For later reference note that from (5) it follows that

dA�y��dy � F�y�dj�dy . (9)

Subsequently, we will treat stiff and soft springs sepa-
rately. Recalling (1), for the stiff pulling potential Vpull
shown in Fig. 1 �k � 1 N�m�, yielding occurs before the
maximum U�x�� is affected by Vpull, i.e., t , x��y. In
this “stiff spring regime” ≠tU�x�, t�jt�t vanishes, hence
≠tDA�y� � 2≠tA�y� � 2yF�y�, and (8) yields

b�A�y� 2 U0�x��� � ln
byF�y� ln2

v0
. (10)

Equation (10) adds a modulation F�y� to previous esti-
mates [10,12,14], which describe the enforced unbinding
rate �~ y� by the Boltzmann factor, exp�2bDA�t��.

Using (9), the derivative of (10) with respect to y reads

dj

dy
�

1
byF�y�

∑
1 1

y

F�y�
dF�y�

dy

∏
, (11)

which can be solved numerically for any given force spec-
trum F�y�. From j�y� and the given F�y�, a force profile
F�	x
� as a function of the average reaction coordinate is
readily obtained via 	x
 � j�y� 2 F�y��k [cf. (6)]. From
(2) and (5), and neglecting the anharmonicity of Vpull, this
reconstructed force profile is identified as a convolution of
the true profile, F�x� � ≠xU0�x�, with a Gaussian func-
tion of half-width s :� 1��bk�1�2.

In the “soft spring regime” �t . x��y�, U�x�� is already
raised before t, and neither x� nor U�x�, t� are generally
constant. Thus, for t . x��y, and using Zb as defined in
(2), the time derivative in (8) reads

≠tDA�y� � kyDx�y� 1 �k�j 2 x�� 2 ≠xU0�x���≠tx
�,

(12)

where Dx :� x� 2 	x
. At the maximum U�x��, one
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obtains

≠xU�x�� � ≠xU0�x�� 2 F�y� 1 kDx�y� � 0 . (13)

By using (6), the second term in (12) vanishes, and
(8) reads

b�A�y� 2 U0�x��� 2
kb

2

∑
Dx 2

F�y�
k

∏2

� ln
bkyDx

v0
.

(14)

Comparison with (10) reveals a different modulation for
the Boltzmann factor, which here results from the shift of
x� due to Vpull and a corresponding decrease of Dx.

In analogy to the above treatment of the stiff spring
regime, the derivative of (14) with respect to y relates
F�y� to a spatial coordinate: there to j, here to Dx�y�,

bDx�y�
∑
k

d	x

dy

1
dF�y�

dy

∏
�

1
y

1
1

Dx
dDx
dy

, (15)

where (13) and (9) were used.
To obtain a force profile F�x� from (15), 	x
 remains to

be specified as a function of F�y�, e.g., from stiff spring
experiments. Without such data, the bound state may
be assumed to be harmonic, i.e., 	x
 �y� � F�y��k0 with
k0 :� ≠2

xU0�x�jx�0. For this case, (11) can be solved,

Dx�y� �

"
yhb

Z `

y
dy0 1

y0

dF�y0�
dy0

#21

, (16)

with h :� 1 1 k�k0. The integral in (16) converges if
F�y� is bounded from above by a polynomial in lny. If the
curvature of F�y� at a logarithmic velocity scale is small,
(16) reduces to

Dx�y� �

∑
hby

dF�y�
dy

∏21

, (17)

which for k ! 0 recovers the TLS result used in [2].
Equations (11) and (16) relate any given force spectrum

to the underlying force profile and are the main result of
this Letter.

To explore accuracy and range of applicability of this
theory we first study the forward transformation and, sub-
sequently, the reconstruction. To that aim we considered
the sample force profile shown in Fig. 2(a). From this
profile we computed “exact” force spectra by numerical
solution of (3) and (4) [Fig. 2(b), symbols] and compared
these with the analytical results [19] for the stiff (10) and
soft spring regimes (14) [Fig. 2(b), solid lines].

For k . 0.01 N�m the spectra exhibit increasingly pro-
nounced plateaus, which can be related to maxima in the
force profile. Each of these plateaus ranges up to a criti-
cal velocity, at which the maximum of F�y, t� exceeds the
force defined by the preceding force maximum. Accord-
ingly, a low maximum succeeding a larger one in the force
profile [e.g., the third maximum in Fig. 2(a)] leaves no
fingerprint in the force spectrum and, therefore, cannot be
reconstructed. This behavior is well described by the stiff
spring approximation.
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FIG. 2. Forward transformation: (a) sample force profile;
(b) force spectra computed numerically (symbols) and analyti-
cally with (10) [upper two curves] and (14) [lower two curves]
for different spring constants k. For clarity, the spectrum with
k � 0.01 N�m has been shifted upwards by 22 pN.

For small k , 0.01 N�m the force spectrum becomes
convex and is well described by the soft spring approxi-
mation, except for a small gap around k � 0.01 N�m,
where both approximations perform poorly below 100 pN
due to the large value of the respective critical force,
Fc � 80 pN. Thus, for our example, the two approxima-
tions cover nearly the whole range of spring constants.

Second, to illustrate the primary application of the the-
ory, we reconstructed a force profile from force spectra.
Two of the numerical force spectra shown in Fig. 2(b) were
used, namely, k � 1023 N�m, which is a value typical for
BFP measurements, and k � 1.0 N�m, which is likely to
be accessible to AFM experiments in the near future. From
each of the two spectra, 50 data points were taken as hypo-
thetical experimental data. To mimic experimental error,
a random scatter of 10% was added. Figure 3(a) displays
the resulting stiff and soft spring data.

Figure 3(b) shows, together with the reference force
profile (solid line), the reconstruction from the stiff spring
��� and from the soft spring data ���. For the former, (11)
was discretized and solved recursively; for comparison, the
convolution of the force profile with a Gaussian function of
half-width 1��bk�1�2 is shown (dashed line). For the lat-
ter reconstruction, the discrete version of (16) was solved,
where for each data point separate values for k0 were taken
from the stiff spring reconstruction, which were also used
to convert Dx to a reaction coordinate, x � Dx 2 F�k0.
“Experimental” data were preprocessed by smoothing with
a Gaussian function. The activation barrier was chosen
such that the energy landscape obtained from the force pro-
file (inset) is smooth at the transition from the stiff ��� to
the soft ��� spring regime.

Essential features, such as the heights and positions of
the force maxima, are well reproduced. Furthermore, our
scheme proves to be robust with respect to experimental
scatter of yielding forces. Note that the maxima resolved
resemble in size those attributed to the rupture of single
hydrogen bonds (cf. Ref. [9]).

Finally, we have attempted to reconstruct in a similar
manner the force profile and energy landscape [Fig. 3(d)
and inset] from a recent single molecule BFP biotin/avidin
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(d)(c)

(b)(a)

FIG. 3. Reconstruction of force profiles [(b,d), symbols] and
energy landscapes (insets) from simulated [(a), symbols] and
real [(c), symbols] experimental data. Simulated experimental
data have been derived from the reference force profile shown in
(b) (solid line) for stiff ��� and soft ��� springs. Single mole-
cule biotin /avidin force spectra (c) were taken with permission
from Ref. [2]. In (b) the convolution of the reference force pro-
file with a Gaussian of half-width s is shown for comparison
(dashed line). In (d) part of the energy landscape could not be
reconstructed and is sketched as the dashed line.

force spectrum [2] [Fig. 3(c)]. The positions of the steps
in the latter force profile agree well with the positions of
the barriers proposed in Ref. [2]. Particularly, the surpris-
ingly long range interaction discussed in Ref. [2] could be
quantified. By construction, the derived energy landscape
approximates the convex hull of the true one, which may
contain wells.

We have developed a theory that relates single molecule
dynamic force probe spectra to the free energy landscape
that governs the molecular response to mechanical stress.
This theory enables one to derive force profiles with high
spatial resolution from measured force spectra, since our
transformation from the space domain into the velocity do-
main circumvents experimental spatial resolution limits.
In particular, soft and stiff spring experiments (e.g., BFP
or optical tweezers versus AFM) are expected to provide
complementary information and, therefore, should be com-
bined. Our results suggest that force probe experiments
covering a large range of loading rates should allow one to
characterize in detail molecular pathways, e.g., of ligand-
receptor unbinding, protein unfolding, polymer stretching,
or molecular adhesion, with a spatial resolution at the level
of single hydrogen bonds.
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and H. Wagner for valuable suggestions. This work was
supported by the DFG, Grant No. GR 1590/1-2.

[1] G. U. Lee, D. A. Kidwell, and R. J. Colton, Langmuir
10, 354 (1994); E.-L. Florin, V. T. Moy, and H. E. Gaub,
Science 264, 415 (1994).

[2] R. Merkel et al., Nature (London) 397, 50 (1999).
[3] P. Hinterdorfer et al., Proc. Natl. Acad. Sci. U.S.A. 93,

3477 (1996); R. Ros et al., Proc. Natl. Acad. Sci. U.S.A.
95, 7402 (1998); D. A. Simson et al., Phys. Rev. Lett. 83,
652 (1999).

[4] M. Rief et al., Science 276, 1109 (1997).
[5] L. Tskhovrebova et al., Nature (London) 387, 308 (1997);

A. F. Oberhauser et al., Nature (London) 393, 181 (1998).
[6] G. U. Lee, L. A. Chrisey, and R. J. Colton, Science 266,

771 (1994); T. Strunz et al., Proc. Natl. Acad. Sci. U.S.A.
96, 11 277 (1999).

[7] M. Rief et al., Science 275, 1295 (1997).
[8] M. Rief, J. M. Fernandez, and H. E. Gaub, Phys. Rev. Lett.

81, 4764 (1998); P. E. Marszalek et al., Nature (London)
396, 661 (1998).

[9] H. Grubmüller, B. Heymann, and P. Tavan, Science 271,
997 (1996).

[10] S. Izrailev et al., Biophys. J. 72, 1568 (1997).
[11] A. Krammer et al., Proc. Natl. Acad. Sci. U.S.A. 96, 1351

(1999); H. Lu and K. Schulten, Proteins 35, 453 (1999);
P. Marszalek et al., Nature (London) 402, 100 (1999).

[12] B. Heymann and H. Grubmüller, Chem. Phys. Lett. 303, 1
(1999); 305, 202 (1999); 307, 425 (1999).

[13] G. I. Bell, Science 200, 618 (1978); J. Shillcock and
U. Seifert, Phys. Rev. E 57, 7301 (1998).

[14] E. Evans and K. Ritchie, Biophys. J. 72, 1541 (1997).
[15] M. Rief et al., Biophys. J. 75, 3008 (1998).
[16] E. Evans and K. Ritchie, Biophys. J. 76, 2439 (1999).
[17] For the semiharmonic potential at hand, a correction,

2�1�Zb�
Rx�

yt dx k�x 2 yt� exp�2bU0�x��, can be ne-
glected if F�y, t� is larger than a critical force, Fc :�
k��b2�k2 1 k2

0 ��1�4. Here, k0 � ≠2
xU0�x� at x � 0

describes the localization of the bound state. For k ¿ k0

(stiff spring) the critical force approaches Fc � �k�b�1�2;
for k ø k0 (soft spring), Fc � k��bk0�1�2 vanishes for
k ! 0.

[18] Like DA�t�, also Py�t� is valid only within the yielding
period. Closer inspection of Py�t� reveals, however, that,
for forces ≠tA�t��y of the order of or larger than the critical
force Fc, Py�t� is a steeply decreasing sigmoidal function
that approaches unity �t , t� and zero �t . t� already
within the yielding period. In this case Py�t� is a good
approximation to the exact solution of (3) for all t $ 0.

[19] Individual yielding forces Fi were taken from the sample
profile. The respective coordinates xi defined yielding
positions ji , which served to numerically compute free
energies Ai via (2). For these values, the required yi were
computed from (10) and (14), respectively.
6129


