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Van der Waals and capacitive forces in atomic force microscopies
M. Saint Jean,a) S. Hudlet, C. Guthmann, and J. Berger
Groupe de Physique des Solides, Universite´s de Paris 6 et 7, CNRS UA 17, Tour 23, 2, Place Jussieu,
75251 PARIS Cedex 05, France

~Received 25 January 1999; accepted for publication 27 July 1999!

In this article we show that in the atomic force microscopy experiments performed on a metallic
surface, there is always a long range electrostatic force in addition to the van der Waals forces. This
capacitive force is due to the contact potential between the tip and the surface and exists even
without external applied potential. We have calculated this capacitive force for a real geometry of
the tip–sample system and compared it to the van der Waals force calculated for the same geometry.
We conclude that the electrostatic force is always dominant for a tip–surface distance larger than
half of the tip radius of curvature. ©1999 American Institute of Physics.
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I. INTRODUCTION

Atomic force microscopies~AFM! offer the possibility
of investigating surfaces by measuring the interaction
tween a sample and a microscopic tip fixed at the end o
small cantilever. Consequently the analysis of the recor
images requires the correct knowledge of the tip–surface
teraction.

For a small distancez, this force is repulsive (z
,1 nm) and its intensity is about 1029 N.1 For larger dis-
tances, the force is attractive and is weaker (10212N). The
repulsive force can be determined from cantilever deflec
measurements~contact mode! whereas the attractive one
determined by measuring the resonance frequency shif2 or
the amplitude variation of the cantilever oscillation.3 The
analysis of the attractive force is not clear. Generally, t
interaction is attributed to van der Waals forces, i.e., to
polar interaction between the atoms or molecules of b
materials constituting the tip and the surface.3–5 However,
some recent experimental results exhibit long range inte
tions which cannot be interpreted by van der Wa
forces.6–11

In this article we show that for a metallic tip–surfac
system the dominant term in the attractive range is alway
long range electrostatic force in addition to the van d
Waals forces. This force is due to the contact potential wh
is defined as the difference of the work functions of ea
material.

To discuss the relative importance of these forces,
have calculated and compared the van der Waals and
capacitive forces for a real geometry of the tip–sample s
tem; these calculations are respectively presented in the
ond and third sections. After comparing these two forces
large range of tip/sample distances, we can conclude in
IV that for a metallic system and for distances larger than
tip curvature radius, the capacitive forces are always do
nant. These results are in good agreement with experime
data.

a!Electronic mail: saintjean@gps.jussieu.fr
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II. CALCULATION OF THE VAN DER WAALS
INTERACTION

The general theory of the attractive interaction betwe
two solids has been developed by Lifshitz.12,13In this theory,
the atomic structure is ignored and the forces between la
bodies are derived in terms of their bulk properties such
their dielectric constant and their geometrical dimensio
This method, including screening and correlation effects
well adapted for a metal–metal interaction. However, to o
tain the variation of the attractive force with the tip–surfa
distance, it is possible to use a less general method which
been developed by Hamaker14 for a nonmetallic system in
which the electrons are localized. In this method, the wh
interaction energy between the tip and the sample is ca
lated by summing the individual interactions of each atom
the tip with each atom of the sample neglecting the inter
tions between the atoms of the tip~or of the sample! to-
gether. In spite of this fundamental difference, the variatio
of the interaction with tip–surface distance shows the sa
dependence calculated with this simple pairwise addit
model or with the more complete Lifshitz formalism.15 Nev-
ertheless, to obtain the right interaction intensity for meta
systems, we have to introduce the prefactor calculated by
Lifshitz method; this factor is roughly constant for a me
and is about 4310219J.15 Notice that this value is ten time
higher than those of nonconducting media and reflects
high polarizability and dielectric constant of metals a
metal oxides.15

Thus, returning to the Hamaker method, the van
Waals dipolar interactionUvdW between two atoms or mol
ecules can be written as

UvdW52
A

r 6 ,

whereA is the Hamaker constant andr is the distance be-
tween the two considered atoms.15,16 Moreover, one has to
take into account the retarded effects in the electromagn
theory, effects which become important as soon as the
tance between the dipoles exceeds the absorption wavele
5 © 1999 American Institute of Physics
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of the materials, i.e., a few nanometers. In this case, it
been shown17,18 that the dispersion interaction energy can
written as

U152
A1

r 7 .

Since in AFM ~resonant mode! the tip–surface distanc
is larger than few nanometers (z.5 nm), the whole interac-
tion energyE1 between the tip and the sample is calcula
by summing this retarded pair interaction

E15A1E E E
tip
E E E

surface

n8~r 8!•n9~r 9!•d3r 8•d3r 9

~r 82r 9!7 .

~1!

In this expression, the prime refers to the tip while t
double prime refers to the sample. Then,n8 and n9 are the
respective densities of atoms of the materials and (r 82r 9)
represents the distance between the two atoms.

Using this method the energyE1 is calculated for the
real tip–surface geometry. The sample is assumed to
semi-infinite volume with a plane surface; the tip shape
termined by electronic microscopy is pictured by a trunca
cone with a spherical apex~Fig. 1!. Its relevant geometric
parameters are the cone heightH, the apex angleu0 , and the
radiusR of the apex.

To evaluateE1, we have first calculated the interactio
energyu1 between the sample and one atom of the tip
cated at a distancez8 from the surface. Using the axial sym
metry of this subsystem and introducing the radial coor
natesr8 andr9, we obtain

FIG. 1. Tip–surface geometry: the tip is described by a sphere-cone m
whereas the surface is supposed to be plane.
Downloaded 12 Aug 2003 to 131.155.80.9. Redistribution subject to AI
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u1~z8!52A1n9E
2`

0

dz9E
0

` r9dr9

@r921~z82z9!2#7/2

52A1
2pn9

20

1

z84 .

The total energyE1 is then calculated by integratingu1

over the whole tip. The result is given by the following e
pression:

E1~z!5n8E
z

zA
dz8E

0

r8~z8!
u1~z8!2pr8dr8,

where the tip–surface distancez is the apex position,zA5z
1H, andr8(z8) the value ofr8 at the surface of the tip a
the heightz8. By integration overr8 we obtain

E1~z!52
H1

10 E
z

zA r8~z8!2dz8

z84 , ~2!

whereH15A1p2n8n9.
To proceed further it is necessary to consider the spec

geometrical model for the tip defined above as a verti
cone ended by a portion of sphere~see Fig. 1!. Then expres-
sion ~2! is calculated straightforwardly by splitting the inte
gral into two parts: one, forz,z8,zB due to the spherica
apex, the second, fromzB to zA , due to the cone, wherezB

5z1R(12sinu0) is defined as the point where the cone a
the sphere have the same tangent plane. It is also conve
to introducezC which is the virtual position of the cone ape

zC5zB2R
cosu0

tgu0
.

Using these notations, the sphere contribution is given b

2
H1

10 E
z

zB r8~z8!2dz8

z84

52
H1

10 E
z

zBS 2
z~z12r !

z84 1
2~R1z!

z83 2
1

z84Ddz8

while the cone contribution is

2
H1

10 E
zB

zA r8~z8!2dz8

z84

52
H1

10 E
zB

zA
tg2u0S 1

z822
2zC

z83 1
zC2

z82 Ddz8,

where in we have introduced the equation of the cone sur

r8~z8!5tgu0~z82zC!.

As zA is always much larger thanzB andzC , we can take for
the limit of the integralzA5`. Then the final expression o
the van der Waals interaction is given by

E152
H1

30 H ~11tg2u0!

z1R~12sinu0!
1

~R2z!

z2 J .

The van der Waals force between the tip and the surfac
deduced from this energy and is given by

el
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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FvdW52
]E1

]z
5

H1

30 H ~11tg2u0!

@z1R~12sinu0!#2 1
~2R2z!

z3 J . ~3!

III. CALCULATION OF THE CAPACITIVE FORCES

In addition to this van der Waals force, the tip is subm
ted to a capacitive interaction associated with the con
potentialVC . This potential is due to the difference betwe
the work functions of the tip and surface materials19 and
exists even in the absence of applied potential. The co
sponding electrostatic energy is then given by

Uelec5
1

2
CVC2,

where C is the capacitance of the tip–sample system. T
capacitive force is derived from this electrostatic energy a
is simply given by

F~z!52
1

2

]C

]z
VC2.

The main difficulty is now to obtain an analytical ex
pression ofC(z) or C8(z) for the real tip shape. Variou
methods have been developed to determine the capacit
of conductors at equilibrium, but unfortunately, even f
such a highly symmetrical geometry, an exact calculation
not possible. Numerical calculations can be provided a
give the exact value of the force but do not allow to discu
the role of the different parameters such as the curvatur
the apex or the tip surface distance. To overcome these
ficulties, we have developed in a previous publication10 an
analytical method to approximate the capacitive force
tween the tip and the surface. In this model, we assimi
the tip to a superposition of infinitesimal plane surfaces
tained by facetting its surface; so the whole capacitance
pears as the sum of dihedral infinitesimal capacitances. E
infinitesimal capacitance is then calculated assuming
value to be equal to the capacitance of the correspon
infinite dihedron.

Using this approximation, it is then easy to calculate
electrical field on each point of the tip surface and to ded
the corresponding surface charge densitys:

s~M !5e0E~M !52e0

V

l ~M !
,

wherel (M ) is the length of the field force line drawn from
the tip to the sample and which is simply, in the frame of o
approximation, an arc of a circle orthogonal to both surfac
The capacitance can then be evaluated for an axisymmet
tip, the shape of which is given by its analytical surfa
equationr8(z8)

C~z!5
1

V E
tip

2pr8~z8!s~z8!dz8.

The calculation in the case of our particular geometry is
tailed in Ref. 13 and the force between the tip and the sam
can be written as
Downloaded 12 Aug 2003 to 131.155.80.9. Redistribution subject to AI
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FC5pe0V2H R2~12sinu0!

z@z1R~12sinu0!#
1

1

@ ln tg~u0/2!#2

3F2 ln
z1R~12sinu0!

H
211

R cos2 u0 /sinu0

z1R~12sinu0!G J . ~4!

In this expression~given for the experimental conditionz
!H! the first term is due to the spherical apex while t
second one is due to the conical part of the tip. Notice t
for z!R, the main contribution is due to the spherical ap
whereas forz@R the conic contribution is dominant. In
AFM resonant mode experiments, since the tip–surface
tance is a fewR, the complete expression~4! of the force has
to be considered to analyze the experiments.

FIG. 2. Variations of the force with the tip–surface distance for 0,z
,50 nm andR520 nm: ~a! van der Waals contribution calculated usin
relation ~3!; ~b! capactive contribution calculated using relation~4!. The
capacitive contribution is dominant as soon asz.10 nm and is the main
contribution in AFM resonant mode.

FIG. 3. Experimental variations of the force between a metallic tip an
metallic surface. The values of the force are obtained from the experime
values of the gradient forceF8 which incertitude isDF851025 N/m; then
the resulting force incertitudeDF is about ofDF5DF8z. For z530 and
500 nm, is respectively 3310213 and 0.5310211 N. The continuous line
corresponds to the fit obtained by introducing the measured geometri
parameters in the approximate force expression. Notice that van der W
force cannot explain this long range interaction.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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IV. COMPARISON BETWEEN VAN DER WAALS AND
CAPACITIVE FORCES

We are now able to compare the relative intensity of
van der Waals and capacitive forces. To be complete,
have also to take into account the capillarity force due to
formation of a water film on the sample surface in ordina
atmosphere. These forces could become important when
distancez between the tip and the surface is smaller than
curvature radius of the tip. For this tip curvature radius,
capillarity forces are in the 1–100 nN range in an ambi
atmosphere characterized by a humidity of ab
30%–50%.20 Since the force measurements are usually p
formed in dry atmosphere, these capillarity phenomena
removed and then will be forgotten hereafter.

van der Waals and capacitive forces have been ca
lated using expressions~3! and ~4! in which we have taken
the geometrical parameters of the tips that we have use
our experiments:H510mm, R520 nm, 2u0520°. For me-
tallic surfaces, the Hamaker constant H1 is about
10227Jm15,21while the typical value for the contact potenti
is VC'1 V.

Figure 2 represents the variations with the tip/surfa
distancez of the different contributions to the tip–surfac
force calculated for the real tip–surface geometry. In d
atmosphere, our calculations show without ambiguity t
the capacitive forces are dominant forz larger thanR/2
510 nm.

This result is confirmed by the results obtained in o
experiments presented in Ref. 10. In these experiments
have measured, with an atomic force microscope acting
resonant mode, the interaction force between a Pt coate
and a gold surface, the tip being grounded and no poten
being applied on the gold surface. All these experime
were performed in a dry nitrogen atmosphere. The varia
of the interaction force is presented in Fig. 3 for very lar
tip–surface distance varying from 3 to 25R.10 The sensitivity
of our experiments results in a force incertitudeDF of 1025

z; then DF is respectively 3310213 and 0.5310211N for
z530 and 500 nm. For these distances, the van der W
force is about 10214N, very much smaller than the measur
force. In contrast, these variations are well fitted by the e
trostatic expression~4! in which we have introduced the geo
metrical tip characteristics (H52 mm, u0510°, and R
520 nm! which have been determined by electronic micro
copy.
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V. CONCLUSION

As a result, we can conclude that the force measured
tip–surface distance larger than 10 nm cannot be interpr
for metallic surfaces in terms of van der Waals forces a
have to be analyzed in terms of a capacitive force. Furth
more, this result shows that one has uniquely to consider
capacitive force to analyze the experiments in the particu
case of AFM resonant mode since these experiments are
erally performed for tip–surface distances larger that 5 n
This conclusion could be extended to nonmetallic syste
since a potential equivalent to the contact potential can
defined for insulator–metal system;22 for instance, this elec-
trostatic force could explain some recent results obtained
oxides/metal system which can not be analyzed by van
Waals forces.11

1O. Goodman and N. Garcia, Phys. Rev. B43, 4728~1991!.
2T. R. Albrecht, P. Gru¨tter, D. Horne, and D. Rugar, J. Appl. Phys.69, 668
~1991!.

3Y. Martin, C. C. Williams, and H. K. Wickramasinghe, J. Appl. Phys.61,
4723 ~1987!.

4U. Hartmann, Phys. Rev. B45, 2404~1991!.
5F. O. Goodman and N. Garcia, Phys. Rev. B43, 4728~1991!.
6N. A. Burham, R. J. Colton, and H. M. Pollock, Phys. Rev. Lett.69, 144
~1992!.

7N. A. Burham, R. J. Colton, and H. M. Pollock, Nanotechnology1, 64
~1993!.

8M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Ap
Phys. Lett.58, 2921~1991!.

9S. Watanabe, Khane, T. Ohye, M. Ito, and T. Goto, J. Vac. Sci. Tech
B 11, 1774~1993!.

10S. Hudlet, M. Saint Jean, C. Guthmann, and J. Berger, Eur. Phys. J.2, 5
~1998!.

11S. Sounilhac, E. Barthel, and F. Creuzet, J. Appl. Phys.85, 222 ~1999!.
12I. Dzyaloshinski, E. Lifshitz, and L. Pataeevski, Adv. Phys.10, 165

~1961!.
13J. Israelachvili and D. Tabor, Proc. R. Soc. London, Ser. A331, 19

~1972!.
14H. C. Hamaker, Physica4, 1058~1937!.
15J. Israelachvili,Intermolecular and Surface Forces~Oxford University,

New York, 1992!.
16C. M. Geoffrey, M. Rigby, E. B. Smith, and W. A. Wakeham,Intermo-

lecular Forces~Oxford University, New York, 1981!.
17H. B. C. Casimir and D. Polder, Phys. Rev.73, 360 ~1948!.
18H. B. C. Casimir and D. Polder, Nature~London! 146, 787 ~1948!.
19N. Ashcroft and N. Mermin,Solid State Physic~Saunders, Philadelphia

1976!.
20A. L. Weisenhorn, P. Maivald, H. J. Butt, and P. K. Hansma, Phys. R

B 45, 11226~1992!.
21J. Mahanty and B. W. Ninham,Dispersion Forces~Academic, New York,

1976!.
22J. Lowell and A. C. Rose-Innes, Adv. Phys.29, 947 ~1980!.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp


